Type 8532 High-Performance Butterfly Valve

The Type 8532 high-performance butterfly valve (figure 1) provides outstanding performance under extreme pressure and temperature conditions. The Type 8532 valve maintains tight shutoff, is available in a fire-tested version, and can be specified for cryogenic applications.

The Type 8532 valve is available as either a flangeless, wafer-style design or as a single-flange (lugged) design. A splined drive shaft combines with a variety of spring-and-diaphragm or pneumatic piston actuators to make the Type 8532 a reliable, high-performance butterfly valve for a variety of throttling and on-off applications in the various process industries.

The Type 8532 valve can be supplied with one of several dynamic seals (figure 5) that can be used in a variety of demanding applications. With the

appropriate seal selection and materials of construction, the pressure-assisted seal provides excellent shutoff against the full ANSI Class 150 or 300 pressure ratings.

Unless otherwise noted, all NACE references are to NACE MR0175-2002.

Note

Neither Emerson®, Emerson Process Management, Fisher®, nor any of their affiliated entities assumes responsibility for the selection, use and maintenance of any product. Responsibility for the selection, use, and maintenance of any product remains with the purchaser and end-user.

Figure 1. Type 8532 Valve

W9138-1

Specifications

Available Valve Configurations

■ Flangeless, wafer-style or ■ single-flange (lugged) control valve with a one-piece valve body, a two-component seal/backup O-ring, and a splined drive shaft

Valve Body Sizes

■ 14, ■ 16, ■ 18, ■ 20, and ■ 24-inch

End Connection Style

■ Flangeless, wafer-style or ■ single flange valve body designed to fit between raised-face mating flanges per ASME B16.5 Class 150 or 300

Maximum Inlet Pressure/Temperature(1)

Consistent with Class ■ 150 and ■ 300 pressure/temperature ratings per ASME B16.34. Also, see figures 3 and 4 for additional information

Available Seal Configurations

Standard Constructions

See figure 5 and table 2

Standard Construction Materials

Valve Body and Disc: ASTM grades of ■ carbon

steel or ■ stainless steel

Disc Coating:

Hardcoating (also see table 2): ■ Standard when used with NOVEX[™] seal, ■ Phoenix III[®] seal, or

■ Cryogenic seal

CoCr-A (Alloy 6): Standard when service temperature exceeds 538°C (1000°F)

Shaft: ASTM grade of ■ S17400 (17-4PH H1025 SST), ■ S17400 (17-4PH H1150M SST), or

■ Nitronic 50

Shaft Extension Lengths:

High Temperature ■ None required for temperatures less than 343°C (650°F),

■ 6 inches for temperatures from 343 to 538°C (650 to 1000°F), or ■ 12 inches for temperatures above 538°C (1000°F)

Cryogenic ■ 914mm (36 inches)

Seal Ring: ■ PTFE, ■ S31600 (316 SST),

■ S21800 (Nitronic 60), ■ S31600/PTFE,

 \blacksquare UHMWPE⁽⁴⁾, or \blacksquare Kel-F⁽⁵⁾.

Backup ring: ■ Nitrile, ■ Neoprene, ■ PTFE,
■ Fluoroelastomer--for a broad range of
hydrocarbon and chemical process applications⁽¹⁾
or ■ EPR--for process applications including
steam and water⁽¹⁾. A backup ring is not used with
the NOVEX seal

Packing: ■ PTFE V-ring (standard packing),
■ Graphite (optional), or ■ ENVIRO-SEAL® packing (optional)

Bearings: ■ PEEK⁽²⁾ (standard material), and ■ S31600, ■ PTFE Composition, or ■ CoCr-A (Alloy 6) (optional)

Valve Body Classification

Face-to-face dimensions are in compliance with MSS SP68 and API 609 standards; valve bodies are designed for installation between ASME B16.5 Class 150 or 300 raised-face flanges

Shutoff Classification. Per ANSI/FCI 70-2 and IEC 60534-4

Standard Soft Seal: Bidirectional bubble-tight

shutoff

NOVEX Seal: Unidirectional shutoff Class V

(preferred flow direction only(3))

Phoenix III Seal: Bidirectional bubble-tight Phoenix III Seal for Fire Tested Applications: Class VI shutoff. Contact your Fisher sales office for more information.

Flow Characteristic

Modified equal percentage

Flow Coefficients

See table 1, the section titled Coefficients in this bulletin, and also Catalog 12.

Noise Levels

See Catalog 12 for sound pressure level prediction

Available Actuators

■ Spring-and-diaphragm, or ■ pneumatic piston

(continued)

Specifications (continued)

Disc Rotation

Clockwise to close

Valve Dimensions and Approximate Weights

See figures 8, 9, 10 and 11

ENVIRO-SEAL Packing

This optional ■ PTFE or ■ graphite packing system provides improved sealing, guiding, and transmission of loading force to control liquid and gas emissions. See Bulletin 59.3:041 **ENVIRO-SEAL Packing Systems for Rotary** Valves for more information.

Features

- Economical Tight Shutoff—The pressure-assisted seal design provides tight shutoff against the full pressure rating of the specified valve.
- Safety—Shaft blowout protection is designed into the Type 8532 valve (figure 7). The anti-blowout gland fits securely over the valve shaft which has been turned down to form a circumferential shoulder that contacts the anti-blowout gland.
- Excellent Flow Control—With a modified equal percentage flow characteristic, the Type 8532 can be used for throttling applications through 90 degrees of disc rotation. Rangeability is 100 to 1.
- Economically Designed for Minimal **Deadband**—A splined end connection on the drive shaft allows lever clamping by most Fisher rotary actuators.
- Application Versatility—Standard construction materials and seal assemblies provide longer life and outstanding performance in a broad range of liquid and gas applications.
- Ease of Maintenance—Interchangeability of all parts including shafts and discs simplifies service and reduces maintenance costs.

- Improved Environmental Capabilities— The optional ENVIRO-SEAL packing system is designed with very smooth stem surfaces and live-loading provides improved sealing, guiding, and loading force transmission. The ENVIRO-SEAL packing system can control emissions below the EPA (Environmental Protection Agency) limit of 500 ppm (parts per million).
- Easy Installation—The valve body self-centers on the line flange bolts as a fast, accurate means of centering the valve in the pipeline.
- Reliable Flange Gasketing Surface—Seal retainer screws are located so there is no interference with the sealing function of either flat sheet or spiral wound line flange gaskets.

Table 1. Flow Coefficients (1)(3)

VALVE SIZE,	MAX C _v ⁽²⁾ , VALVE 90° OPEN						
INCHES	Class 150	Class 300					
14	6320	4550					
16	8600	5630					
18	11,050	8230					
20	13,850	9530					
24	21,500	12,510					

^{1.} To obtain the flow coefficient K_{ν} in terms of cubic meters per hour at one kilogram force per square centimeter differential pressure across the valve, using the following multiplier: $K_{\nu} = 0.856~C_{\nu}$. 2. Measured in gallons per minutes at 1 psi differential pressure across the valve. 3. See the section titled Coefficients in this bulletin, and also Catalog 12 for a

The pressure/temperature limits in this bulletin (figures 3 and 4), and any application code or standard limitation, should not be exceeded

PEEK stands for poly-ether-ether-ketone.
 For optimum seal performance, the preferred valve orientation at shutoff is with the retaining ring downstream from the high pressure side of the valve.
 UHMWPE stands for ultra high molecular weight polyethylene.
 Kel-F not recommended for fast cycling, less than 2 seconds. Contact an Applications Engineer for other seals available for fast cycling or tighter shutoff.

complete listing of flow coefficients.

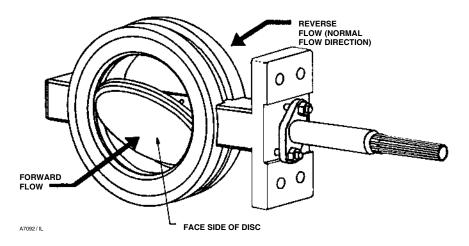


Figure 2. Flow Direction

Installation

Recommended installation for the Type 8532 valve is with the shaft horizontal in a normal-flow direction. Horizontal installation will enhance valve performance because process fluid flow will sweep entrained solids from valve surfaces. This sweeping action prevents particle buildup on seal surfaces. However, the valve may be installed in either the forward or reverse flow direction.

The standard soft seal offers bubble-tight, bidirectional shutoff. To meet the performance requirements of many of today's fire-tested requirements, a Phoenix III valve must be installed in the preferred valve orientation. Both the NOVEX and

cryogenic seals are uni-directional and should be installed with the shaft upstream of the seal.

Unique operating conditions may require a specific combination of actuator motion. To satisfy unique operating requirements, the valve and actuator can be assembled in eight ways, providing for actuator motion and open disc position. For assistance in selecting the appropriate combination of actuator action and open valve position, consult your Fisher sales office.

Dimensions and weights for wafer-style and single-flange valves are shown in figures 8, 9, 10 and 11.

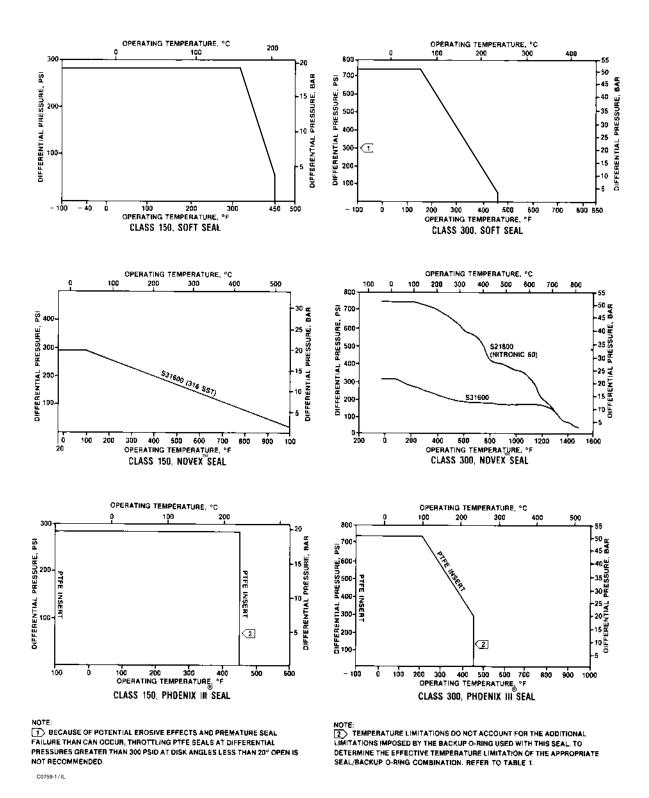


Figure 3. Maximum Pressure/Temperature Ratings for Soft Seal, NOVEX™ Seal and Phoenix III® Seal, Class 150 and 300

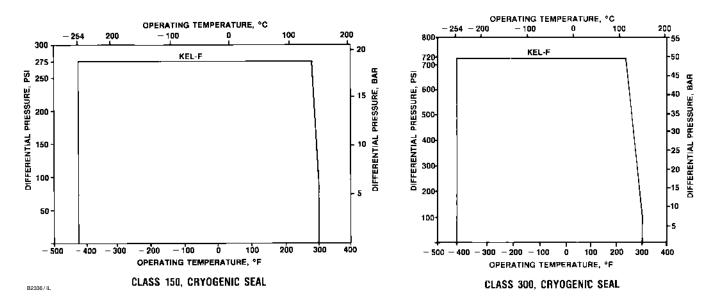


Figure 4. Maximum Pressure/Temperature Ratings for Cryogenic Seal, Class 150 and 300

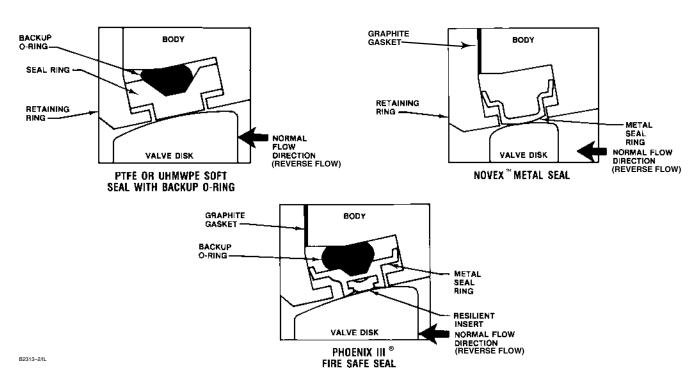


Figure 5. Available Seal Configurations

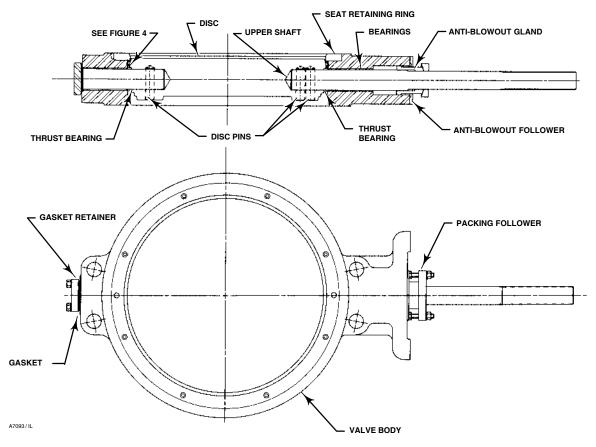


Figure 6. Typical Valve Assembly

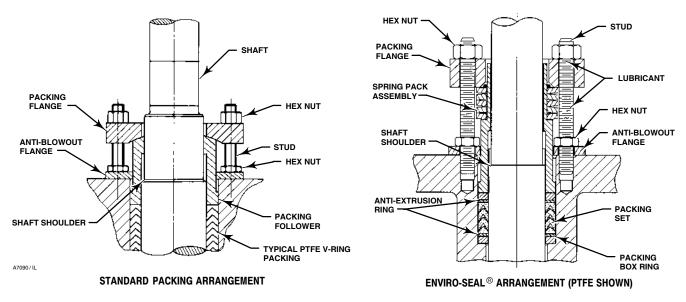


Figure 7. Blowout Protection

Table 2. Material Temperature Ratings

OOMII OI1E	INT AND MATERIAL OF CONSTRUCTION ⁽¹⁾		URE RANGE		
		°C	°F		
	Valve Body ⁽²⁾				
(Carbon Steel (WCC or SA 516-70) ⁽⁷⁾	-29 to 427	-20 to 800		
CF8	BM (316 SST) ANSI Class 150 and 300	-198 to 538	-325 to 1000		
CF8M ⁽³⁾ FMS 20	B16 a Fisher material standard (0.04% min carbon)				
	ANSI Class 300	over 538 to 816	over 1000 to 1500		
	Disc				
	WCC carbon steel	-29 to 427	-20 to 800		
	CF8M (316 SST)	-198 to 538	-325 to 1000		
CF8M ⁽³⁾ FMS 20	B16 a Fisher material standard (0.04% min carbon)				
	ANSI Class 300	over 538 to 816	over 1000 to 1500		
	Disc Coating				
	CoCr-A (Alloy 6)	–198 to 916	-325 to 1500		
Hard Coating (Electroles	ss nickel coating or hard chrome coating - see note below.)	–254 to 538	-425 to 1000		
	Shaft				
	S20910 (Nitronic 50)	-198 to 538	-325 to 1000		
	S17400 (17-4 pH 1025)	-73 to 427	-100 to 800		
	S17400 (17-4 pH H1150M)	-196 to 427	-320 to 800		
	N07718 (Inconel 718)	-254 to 704	-425 to 1300		
	N07750 (Inconel 750)	over 593 to 816	over 1100 to 1500		
	Bearings ⁽⁶⁾				
	PEEK (standard)	-73 to 260	-100 to 500		
	S31600 ⁽⁴⁾	-198 to 816	-325 to 1500		
	R30006 (Alloy 6)	-198 to 816	-325 to 1500		
	Bronze	-254 to 302	-425 to 575		
DTEE !	Packing	440 4 000	005 : 450		
PIFEF	Packing and PTFE ENVIRO-SEAL Packing	-148 to 232	-325 to 450		
_	Graphite packing	-198 to 916	-325 to 1500		
G	iraphite packing with oxidizing media Graphite ENVIRO-SEAL Packing	-198 to 538 -148 to 315	-325 to 1000 -325 to 600		
	PTFE Seal Ring	-140 t0 313	-323 10 000		
	Nitrile Backup O-Ring	-29 to 93	-20 to 200		
	Neoprene Backup O-Ring	-43 to 149	-45 to 300		
	EPR Backup O-Ring	-54 to 182	-65 to 360		
	Fluoroelastomer Backup O-Ring	-29 to 204	-20 to 400		
	PTFE Backup O-Ring	-73 to 204	-100 to 400		
	UHMWPE ⁽⁵⁾ Seal Ring (Class 150 Only)				
	Nitrile Backup O-Ring	-29 to 93	-20 to 200		
Seal Ring and	Neoprene Backup O-Ring	-43 to 93	-45 to 200		
Backup Ring	EPR Backup O-Ring	-54 to 93	-65 to 200		
	Fluoroelastomer Backup O-Ring	-29 to 93	-20 to 200		
	PTFE Backup O-Ring	-73 to 93	-40 to 200		
	Phoenix III and/or Fire Tested Construction				
	S31600 and PTFE Seal Ring with Nitrile Backup O-Ring	-40 to 149	-40 to 300		
		-54 to 149	-65 to 300		
	Neoprene Backup O-Ring				
	EPR Backup O-Ring	-62 to 204	-80 to 400		
			-80 to 400 -100 to 200		
	EPR Backup O-Ring Fluoroelastomer Backup O-Ring	-62 to 204			
	EPR Backup O-Ring Fluoroelastomer Backup O-Ring NOVEX S31600 Seal ⁽⁴⁾ Ring (Class 150)	-62 to 204 -40 to 232 -29 to 538	-100 to 200 -20 to 1000		
Seal Ring	EPR Backup O-Ring Fluoroelastomer Backup O-Ring	-62 to 204 -40 to 232	-100 to 200		

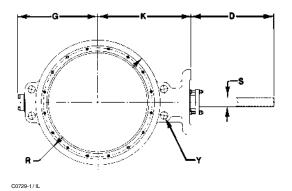
^{1.} NACE trim constructions are available; consult your Fisher sales office.

2. Special gasket retainer bolts are required for over 482°C (900°F)

3. Special retaining ring screws for single flange valves over 538°C (1000°F)

4. For a complete material description, contact your Fisher sales office.

5. UHMWPE stands for ultra high molecular weight polyethylene.


6. Special thrust bearings are required for high temp. applications over 343°C (650°F) (with 6- and 12-inch shaft extensions). Constructions with carbon steel valves and SST discs may require special thrust bearings at temperatures less than 343°C (650°F).

Note: The material for hard coating on the disc is either hard chrome plating or electroless nickel coating (ENC), depending upon availability.

7. Cast or wrought /plate grades used interchangeably, depending upon availability – unless requested by customer.

Table 3. Dimensions and Weights, Wafer Style Valves, ANSI Class 150

Valve Size, Inches	A ⁽¹⁾	D	G	К	M ⁽²⁾	R	S (Shaft Dia at Yoke Bearings)	Т	U	w	Y	Approx Weight
						mr	n					kg
14	91.9	208	295	327	331	422	31.8	235	46.0	17.5		72
16	102	208	318	371	375	465	31.8	235	46.0	17.5	28.6 4 holes	94
18	114	356	349	400	419	529	39.6	273	50.8	20.1	31.8 4 holes	139
20	127	356	381	432	464	584	44.5	273	50.8	20.1	31.8 4 holes	167
24	154	356	438	492	581	692	57.2	337	76.2	23.9	34.9 4 holes	255
		•	•			Inch	es	•	•	•		Pounds
14	3.62	8.19	11.62	12.88	13.04	16.62	1-1/4	9.25	1.81	0.69		158
16	4.00	8.19	12.50	14.62	14.77	18.31	1-1/4	9.25	1.81	0.69	1-1/8 4 holes	207
18	4.50	14	13.75	15.75	16.49	20.81	1-9/16	10.75	2.00	0.81	1-1/4 4 holes	307
20	5.00	14	15.00	17.00	18.27	23.00	1-3/4	10.75	2.00	0.81	1-1/4 4 holes	368
24	6.06	14	17.25	19.38	22.87	27.25	2-1/4	13.25	3.00	0.94	1-3/8 4 holes	563

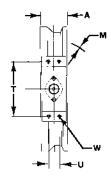
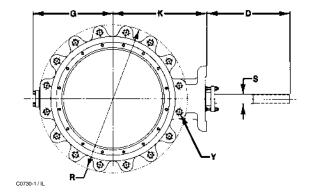



Figure 8. Dimensions and Weights, Wafer Style Valves, ANSI Class 150 (also see table 3)

Table 4. Dimensions and Weights, Single Flange Valves, ANSI Class 150

Valve Size, Inches	A ⁽¹⁾	D	G	к	M ⁽²⁾	R	S (Shaft Dia at Yoke Bearings)	т	U	w	Y	Approx Weight
							mm					kg
14	91.9	208	295	327	331	531	31.8	235	46.0	14.2		95
16	102	208	318	371	375	607	31.8	235	46.0	14.2		138
18	114	356	349	400	419	645	39.7	273	50.8	20.1		178
20	127	356	381	432	464	696	44.5	273	50.8	20.1		224
24	154	356	438	492	581	822	57.2	337	76.2	23.9		315
		•					Inches					Pounds
14	3.62	8.19	11.62	12.88	13.04	20.88	1-1/4	9.25	1.81	0.56	1-8 12 Holes	209
16	4.00	8.19	12.50	14.62	14.77	23.88	1-1/4	9.25	1.81	0.56	1-8 16 Holes	304
18	4.50	14	13.75	15.75	16.49	25.38	1-9/16	10.75	2.00	0.81	1-1/8-8 16 Holes	393
20	5.00	14	15.00	17.00	18.27	27.38	1-3/4	10.75	2.00	0.81	1-1/8-8 20 Holes	493
24	6.06	14	17.25	19.38	22.87	32.38	2-1/4	13.25	3.00	0.94	1-1/4-8 20 Holes	773

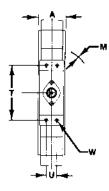
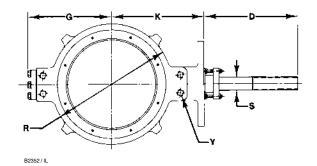



Figure 9. Dimensions and Weights, Single Flange Valves, ANSI Class 150 (also see table 4).

Table 5. Dimensions and Weights, Wafer Style Valves, ANSI Class 300

Valve Size, Inches	A ⁽¹⁾	D	G	К	M ⁽²⁾	R	S (Shaft Dia at Yoke Bearings)	т	U	w	Y	Approx Weight
				•			mm					kg
14	117	356	319	364	304	437	44.5	273	50.8	20.6		121
16	133	356	353	397	346	498	44.5	273	50.8	20.6		183
18	149	356	384	419	389	556	57.2	337	76.2	23.9		227
20	159	265	416	483	442	605	76	337	76.2	23.9		364
24	181	265	483	546	523	716	89	337	76.2	23.9		469
						Ir	nches	•	•	•		Pounds
14	4.62	14	12.56	14.31	12	17.19	1-3/4	10.75	2	0.81	1-1/8-8 4 Holes	266
16	5.25	14	13.88	15.62	13.6	19.62	1-3/4	10.75	2	0.81	1-1/4-8 4 Holes	403
18	5.88	14	15.12	16.50	15.3	21.88	2-1/4	13.25	3	0.94	1-1/4-8 4 Holes	500
20	6.25	10-7/16	16.38	19.00	17.4	23.81	3	13.25	3	0.94	1-1/4-8 4 Holes	802
24	7.12	10-7/16	19.00	21.50	20.6	28.19	3-1/2	13.25	3	0.94	1-1/2-8 4 Holes	1035
1. Face-to-face 2. M is the mir					and API 609 sp clearance.	ecifications.	1	1			1	-1

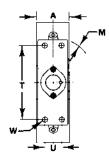


Figure 10. Dimensions and Weights, Wafer Style Valves, ANSI Class 300 (also see table 5).

11

Table 6. Dimensions and Weights, Single Flange Valves, ANSI Class 300

Valve Size, Inches	A ⁽¹⁾	D	G	к	M ⁽²⁾	R	S (Shaft Dia at Yoke Bearings)	Т	U	w	Y	Approx Weight	
		mm											
14	117	356	319	364	304	594	44.5	273	50.8	20.6		227	
16	133	356	353	397	346	657	44.5	273	50.8	20.6		294	
18	149	356	384	419	389	721	57.2	337	76.2	23.9		402	
20	159	265	416	483	442	784	76	337	76.2	23.9		544	
24	181	265	483	546	523	924	89	337	76.2	23.9		821	
			•			Ir	nches		•	•		Pounds	
14	4.62	14	12.56	14.31	12.0	23.38	1-3/4	10.75	2	0.81	1-1/8-8 16 Holes	500	
16	5.25	14	13.88	15.62	13.6	25.88	1-3/4	10.75	2	0.81	1-1/4-8 20 Holes	649	
18	5.88	14	15.12	16.50	15.3	28.38	2-1/4	13.25	3	0.94	1-1/4-8 24 Holes	886	
20	6.25	10-7/16	16.38	19.00	17.4	30.88	3	13.25	3	0.94	1-1/4-8 24 Holes	1200	
24	7.12	10-7/16	19.00	21.50	20.	36.38	3-1/2	13.25	3	0.94	1-1/2-8 24 Holes	1810	

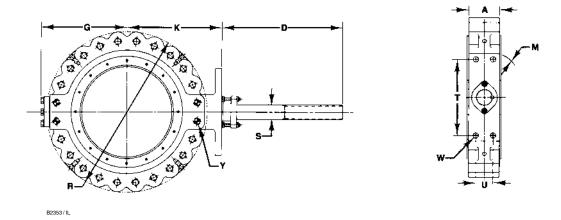


Figure 11. Dimensions and Weights, Single Flange Valves, ANSI Class 300 (also see table 6)

Coefficients

Table 7. Type 8532, Class 150, Reverse Flow

	Valve	Valve Rotation, Degrees										
Coefficients	Size, Inches	10	20	30	40	50	60	70	80	90		
C _v		95	316	695	1200	1900	2840	3980	5120	6320		
K _v		82.2	273	601	1038	1643	2457	3443	4429	5467		
F _d	14	0.090	0.17	0.26	0.34	0.42	0.49	0.57	0.64	0.70		
FL		0.77	0.79	0.81	0.81	0.78	0.73	0.68	0.60	0.52		
X _T		0.50	0.53	0.55	0.55	0.51	0.45	0.39	0.30	0.23		
C_{v}		129	430	946	1640	2580	3870	5420	6970	8600		
K _v		112	372	818	1419	2232	3348	4688	6029	7439		
F _d	16	0.090	0.17	0.26	0.34	0.42	0.49	0.57	0.64	0.70		
FL		0.77	0.79	0.81	0.81	0.78	0.73	0.68	0.60	0.52		
X _T		0.50	0.53	0.55	0.51	0.51	0.45	0.39	0.30	0.23		
C_v		166	553	1220	2100	3320	4970	6960	8950	11,050		
K _v		144	478	1055	1817	2872	4299	6020	7742	9558		
F _d	18	0.090	0.17	0.26	0.34	0.42	0.49	0.57	0.64	0.70		
FL		0.77	0.79	0.81	0.81	0.78	0.73	0.68	0.60	0.52		
X _T		0.50	0.53	0.55	0.55	0.51	0.45	0.39	0.30	0.23		
C_v		208	692	1520	2630	4160	6230	8730	11,220	13,850		
K _v		180	599	1315	2275	3598	5389	7551	9705	11,980		
F_d	20	0.090	0.17	0.26	0.34	0.42	0.49	0.57	0.64	0.70		
FL		0.77	0.79	0.81	0.81	0.78	0.73	0.68	0.60	0.52		
X _T		0.50	0.53	0.55	0.55	0.51	0.45	0.39	0.30	0.23		
C _v		322	1080	2370	4080	6450	9670	13,540	17,410	21,500		
K _v		277	934	2050	3529	5579	8365	11,712	15,060	18,598		
F _d	24	0.090	0.17	0.26	0.34	0.42	0.49	0.57	0.64	0.70		
FL		0.77	0.79	0.81	0.81	0.78	0.73	0.68	0.60	0.52		
X _T		0.50	0.53	0.55	0.55	0.51	0.45	0.39	0.30	0.23		

Table 8. Type 8532, Class 300, Reverse Flow

	Valve	Valve Rotation, Degrees										
Coefficients	Size, Inches	10	20	30	40	50	60	70	80	90		
C _v		136	341	704	1200	1860	2680	3450	4050	4550		
K _v		118	295	609	1038	1609	2318	2984	3503	3936		
F _d	14	0.090	0.17	0.26	0.34	0.42	0.49	0.57	0.64	0.70		
F_L		0.78	0.81	0.81	0.79	0.75	0.69	0.62	0.56	0.52		
X _T		0.51	0.55	0.55	0.53	0.47	0.40	0.33	0.26	0.23		
C_{v}		169	422	873	1490	2310	3320	4280	5010	5630		
Κ _ν		146	365	755	1289	1998	2872	3702	4334	4870		
F _d	16	0.090	0.17	0.26	0.34	0.42	0.49	0.57	0.64	0.70		
FL		0.78	0.81	0.81	0.79	0.75	0.69	0.62	0.56	0.52		
X _T		0.51	0.55	0.55	0.53	0.47	0.40	0.33	0.26	0.23		
C _v		247	617	1280	2180	3370	4860	6260	7330	8230		
K _v		214	534	1107	1886	2915	4204	5415	6340	7119		
F _d	18	0.090	0.17	0.26	0.34	0.42	0.49	0.57	0.64	0.70		
FL		0.78	0.81	0.81	0.79	0.75	0.69	0.62	0.56	0.52		
X _T		0.51	0.55	0.55	0.53	0.47	0.40	0.33	0.26	0.23		
C _v		286	714	1480	2520	3910	5620	7240	8480	9530		
K _v		247	618	1280	2180	3382	4861	6263	7335	8243		
F _d	20	0.090	0.17	0.26	0.34	0.42	0.49	0.57	0.64	0.70		
FL		0.78	0.81	0.81	0.79	0.75	0.69	0.62	0.56	0.52		
X _T		0.51	0.55	0.55	0.53	0.47	0.40	0.33	0.26	0.23		
C _v		375	938	1940	3320	5130	7380	9510	11,140	12,510		
K _v		324	811	1678	2872	4437	6384	8226	9636	10,821		
F _d	24	0.090	0.17	0.26	0.34	0.42	0.49	0.57	0.64	0.70		
FL		0.78	0.81	0.81	0.79	0.75	0.69	0.62	0.56	0.52		
X _T		0.51	0.55	0.55	0.53	0.47	0.40	0.33	0.26	0.23		

Note

Neither Emerson, Emerson Process Management, Fisher, nor any of their affiliated entities assumes responsibility for the selection, use and maintenance of any product. Responsibility for the selection, use, and maintenance of any product remains with the purchaser and end-user.

NOVEX, Phoenix III, ENVIRO-SEAL and Fisher are marks owned by Fisher Controls International LLC, a member of the Emerson Process Management business division of Emerson Electric Co. Emerson and the Emerson logo are trademarks and service marks of Emerson Electric Co. All other marks are the property of their respective owners. This product may be covered under one or more of the following patents; 5,129,625; 5,131,666; 5,535,986 and 5,542,981 or under pending patents.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

Neither Emerson, Emerson Process Management, Fisher, nor any of their affiliated entities assumes responsibility for the selection, use and maintenance of any product. Responsibility for the selection, use and maintenance of any product remains with the purchaser and end-user.

Emerson Process Management

Fisher

Marshalltown, Iowa 50158 USA Cernay 68700 France Sao Paulo 05424 Brazil Singapore 128461

www.Fisher.com

